Nearly tight bounds for testing
tree tensor network states

Benjamin Lovitz (Northeastern) and Angus Lowe (MIT)

. Lower Bound for a Specific Algorithm
lll. Thereis No Better Algorithm

IV. Final Remarks

@

Alice, the learner

) N

@ @M@

\
a

What are the expected values of some observables? (Shadow tomography)
How strong is the magnetic field that produces the state 1/? (Quantum sensing)
What is 1)? (Tomography/learning)

Is 1) evenin C? (Property testing)

@

Alice, the learner

) N

@ @M@

\
a

What are the expected values of some observables? (Shadow tomography)
How strong is the magnetic field that produces the state 1/? (Quantum sensing)
What is 1)? (Tomography/learning)

Is 1) evenin C? (Property testing)

Quantum Property Testing

Quantum Property Testing

Completeness: Tr(Myp®V) > a

Quantum Property Testing

Completeness: Tr(Myp®V) > a Soundness: Tr(My®Y) < b

Quantum Property Testing

Completeness: Tr(Myp®V) > a Soundness: Tr(My®Y) < b

e “Successful”’ifa—b = Q(1)

Quantum Property Testing

Completeness: Tr(Myp®V) > a Soundness: Tr(My®Y) < b

e “Successful”’ifa—b = Q(1)
 “Perfect completeness”ifa =1

Selected Prior Work

(Genuine) multipartite

’ State certification [BOW’17
Rank test [OW"15] entanglement [HLM’13, JM’24] !]

» Hard
Mixedness test [OW’15]

Product test [HM’10]

Easy <

Stabilizer test [GNW’21] MPS test [SW’22]

Q(d) copies

O(1) copies

Selected Prior Work

I
1
] " ’ (Genuine) multipartite UL ,
Product test [HM’10] 1 Ranktest [OW15] ¢pianglement [HLM®13, JM’24] State certification [BOW’17]
|
Easy < V4 » Hard

Stabilizer test [GNW’21] Mixedness test [OW’15] \/

MPS test [SW'22] 7
Q(d) copies

O(1) copies

v/ =solved (up to loglog d factors)

* .
v/ = .. with perfect completeness

Selected Prior Work

| 1
N v A Vv
Product test [HM’10] : Rank test [OW’15] enta(rfgelzgr::(ra]r?z[rln—ltlj_ll:c/:aa:;;tl\e;l’24]i State certification [BOW’17]
Easy < v : : > Hard
Stabilizer test [GNW’21] i MPS test [SW'22] \/* | Mixedness test [OW15] v
|
0(1) copies i i (1(d) copies
This work

v/ =solved (up to loglog d factors)

* .
v/ = .. with perfect completeness

Testing Tensor Network States

Testing Tensor Network States

* MPS/TTNS, PEPS, etc. are important classes of states in Ql and condensed
matter physics

Testing Tensor Network States

* | MPS/TTNS, PEPS, etc. are important classes of states in Ql and condensed
matter physics

Testing Tensor Network States

* | MPS/TTNS, PEPS, etc. are important classes of states in Ql and condensed
matter physics

___———

Testing Tensor Network States

* | MPS/TTNS, PEPS, etc. are important classes of states in Ql and condensed
matter physics

MPS testing:
H=ChRQC2 R & Cln

" /\? C = MPS(r)_ ‘ L L 4}

___———

? 1/J EH: P, dn M[1 llM[Z]l2 . M[n]l" 1 M[l]l"}

a1 An—20n—-1 "An

={Y eH: SR(Y) <r Ve € E}

Testing Tensor Network States

* | MPS/TTNS, PEPS, etc. are important classes of states in Ql and condensed
matter physics

TTNS testing:
H=ChRQC2 QR Cln

AN € = TTNS(G,7) = {

___———

={Y e H: SRY) <r Ve € E}

Main Result

TTNS testing:
Fix any tree graph G = (V, E) with n vertices.
il 7
H = C%h ®(Cd2 ®...®(Cdn c \‘z/;
o__--- ;'7"""_

C=TTNS(G,r) ={Y e H: SR(Y) <r Ve € E}

Main Result

TTNS testing:

Fix any tree graph G = (V, E) with n vertices.
H=C"*RCK - QR Cln c '\
C=TTNS(G,v) ={y e H: SRY) <r Ve € E}

Brief History

Main Result

TTNS testing:
Fix any tree graph G = (V, E) with n vertices.
il < ?
H=C"rQRQC2 Q- & Cln . 4 \\w
o__--- ;',"'"_

C=TTNS(G,r) ={Y e H: SR(Y) <r Ve € E}

Brief History
« Atr = 1thisis producttesting: (1) copies necessary and sufficient [HM10]

« ForMPSatr > 2: Q(4/n) copies necessary, and 0(nr?) sufficient [SW22]
* ForMPSatr < 2™8: (/1) copies necessary [Aar+23]

" with perfect completeness

« ForMPSatr = 2: Q(y/nr +r?)*copies necessary [CWZ24]

Main Result

TTNS testing:
Fix any tree graph G = (V, E) with n vertices.
i < ?
H=C"rQRQC2 Q- & Cln . 4 \\w
o__--- ;')"'"'

C=TTNS(G,r) ={Y e H: SR(Y) <r Ve € E}

Brief History
« Atr = 1thisis producttesting: (1) copies necessary and sufficient [HM10]

For MPSatr > 2: Q(4/n) copies necessary, and 0(nr?) sufficient [SW22]
* ForMPSatr < 2™8: (/1) copies necessary [Aar+23]
« ForMPSatr = 2: Q(y/nr +r?)*copies necessary [CWZ24] " with perfect completeness

 ForanyTINSatr = 2 +log(n): Q(nr?/logn)’ copies necessary, and 0(nr?)
copies sufficient [This work]

. Background & Results
. Lower Bound for a Specific Algorithm
lll. Thereis No Better Algorithm

IV. Final Remarks

The Algorithm

Apply the rank test to every edge [SW’22]:

The Algorithm

Apply the rank test to every edge [SW’22]:

The Algorithm

Apply the rank test to every edge [SW’22]:

QN
P1345

The Algorithm

Apply the rank test to every edge [SW’22]:

p%IZS » Isrank(p) <r?

The Algorithm

Apply the rank test to every edge [SW’22]:

p%IZS » Isrank(p) <r?

N = 0(nr?) copies suffice to detect far-away state.

The Hard Instance

The Hard Instance

. 4
,/
’
’
l”
’
4 (F
., ‘

¢ o

The Hard Instance

. 4
,l
’
’
/,, (p
’
4
., ‘

'f“ “Lb
atiy=| [1-F, |—* E :
Schmidt(¢) —(Jl—n'Jn(d—l)’jn(d—l)""' n(d—1)>

The Hard Instance

e rr’
//’,,, (p
) dist(®"" 1, TTNS) ~ €

‘JJ‘ ‘mb
atiy=| [1-F, |—* E :
Schmidt(¢) —(Jl—n'Jn(d—l)’jn(d—l)""' n(d—1)>

The Hard Instance

P f!
¢
- @ dist(p®"" 1, TTNS) ~ €

But any reduced density matrix
ple]is quite close to rank-r

‘JJ‘ “Lb
atiy=| [1-F, |—* E :
Schmidt(¢) —(Jl—n'Jn(d—l)’jn(d—l)""' n(d—1)>

The Hard Instance

P r!
¢
- @ dist(p®"" 1, TTNS) ~ €

But any reduced density matrix
ple]is quite close to rank-r

. — the rank test struggles to
reject!
Schmidt(p) = (/1 —E,\/ d ,\/ d A d >
n [n(d—-1) [n(d-1) n(d—1)

Rank Testing

Fact from representation theory:

p®N = @ Ip, ® q4(p)

AEN

Rank Testing

Fact from representation theory:

p®N = @ Ip, ® q4(p)

— N\

irreps of Sy and U(d)

Rank Testing

Fact from representation theory:

p®N = @ Ip, ® q4(p)

— N\

irreps of Sy and U(d)

Due to symmetry, measuring A is optimal. Accept if £(1) < r.

Rank Testing

Fact from representation theory:

p®N = @ Ip, ® q4(p)

— N\

irreps of Sy and U(d)

Due to symmetry, measuring A is optimal. Accept if £(1) < r.

/v Schur polynomial

Distributed as p(1) = Tr(I:pA)Tr (qf{(p)) = dim(P,)sy(p1, --» Pa)

Spectrum of p

Rank Testing

Fact from representation theory:

p®N = @ Ip, ® q4(p)

— N\

irreps of Sy and U(d)

Due to symmetry, measuring A is optimal. Accept if £(1) < r.

Theorem [OW’15]: Letp = (py, ..., pg) be the spectrum of p and let X4, ..., Xy ~ D,
iid. It holds that

Dace = Z Tr(M;p®V) = Pr[LDS(X) <]
AEN:£A(A)<sr

@ .
Lower Bound Proof Sketch Y E

o o

N € € €
Schmidt(¢) = (Jl n’ Jn(d- 1’ jn(d— 1)""'jn(d = 1))

?%;E.f?
o e

N € € €
Schmidt(¢) = (Jl n’ \/n(d 1y Jn(d - 1)""'Jn(d = 1))

Lower Bound Proof Sketch

The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pge)™ L.

@
/"171". Y
E
gjl ° .xb
N € € €
Schmidt(¢) = <\/1 n’ jn(d -’ Jn(d - 1)""‘Jn(d - 1))

Lower Bound Proof Sketch

The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pgec)™ 1.

Recall: Rank test accepts with probability

Pacc = Prl[LDS(X) <]
where X is random word with letters sampled according
to spec(p).

Lower Bound Proof Sketch

The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pgec)™ 1.

Recall: Rank test accepts with probability

Pacc = Prl[LDS(X) <]
where X is random word with letters sampled according
to spec(p).

We get an N-letter word like X = 111181111113511121 ...

—

E

.
. .
.
.
p
g
%
y
’
p]
’ .

¢ o

€

€

Schmidt(p) = < fl —%,\/n(de_ 1),\j

nd-1""

J

n(d—1)

|

Lower Bound Proof Sketch

The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pgec)™ 1.

Recall: Rank test accepts with probability

Pacc = Prl[LDS(X) <]
where X is random word with letters sampled according
to spec(p).

We get an N-letter word like X = 111181111113511121 ...

Y = 8352...

—

E

.
. .
.
.
p
g
%
y
’
p]
’ .

¢ o

Schmidt(p) = < fl —%,\/n(de_ 1),\j

€

€

nd-1""

J

n(d—1)

|

@
/'L'?L‘. Y
E
‘H ° .xb
N € € €
Schmidt(¢) = <\/1 n’ jn(d -’ Jn(d - 1)""‘Jn(d - 1))

Lower Bound Proof Sketch

The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pgec)™ 1.

Recall: Rank test accepts with probability
Pgce = Pr[LDS(X) <]

where X is random word with letters sampled according
to spec(p).

We get an N-letter word like X = 111181111113511121 ...
Y = 8352 ...

L r
Y is uniformly random, L-letter word > Pr[LDS(Y)<r]=1-— (—)

Counting

@ .
/"171". Y
E
® ° .xb
N € € €
Schmidt(p) = <\/1 n’ jn(d e Jn(d = 1)""‘Jn(d - 1))

Lower Bound Proof Sketch

The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pge)™ L.

We get an N-letter word like X = 111181111113511121 ...
Y = 8352 ...

L r
Y is uniformly random, L-letter word > Pr[LDS(Y)<r]|=1- (-)

Counting

@
//l;l". Y
E
‘I’ ° .xb
N € € €
Schmidt(¢) = <\/1 n’ jn(d -’ Jn(d - 1)""‘Jn(d - 1))

Lower Bound Proof Sketch

The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pgec)™ 1.

We get an N-letter word like X = 111181111113511121 ...

Y = 8352 ...
L r
Y is uniformly random, L-letter word > Pr[LDS(Y)<r]|=1- <—2>
Counting r
l_'_l
*

r

_ o Ne 2 1 (1
L =lengthof V' = — So suppose N < nr</(logn). Then % ~ 1 (logn) .

@
/'L'?L‘. Y
E
‘H ° .xb
N € € €
Schmidt(¢) = <\/1 n’ jn(d -’ Jn(d - 1)""‘Jn(d - 1))

Lower Bound Proof Sketch

The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pgec)™ 1.

We get an N-letter word like X = 111181111113511121 ...

Y = 8352 ...
L r

Y is uniformly random, L-letter word > Pr[LDS(Y)<r]|=1- <—2>
Counting r

l_'_l
*
L =lengthof V' = Y€ so suppose N < nr?/(logn). Then % ~1-— (!)T
n’ ' logn/

n

logn
Soifr =~ lognthen (pge)" 1 = (1 — (-)) - 1.

logn

. Background & Results

. Lower Bound for a Specific Algorithm

IV. Conclusion

Lemma: The optimal test with perfect completeness for any class C of pure
states is

Facc = proj span {|¢>®N:) € C}-

Lemma: The optimal test with perfect completeness for any class C of pure
states is

Facc = proj span {|¢>®N:) € C}-

4 NN

proj span {|)®": |¢) € TTNS(G,r)} = proj span

N W)

\®N

Z proj span

Lemma: The optimal test with perfect completeness for any class C of pure
states is

Facc = proj span {|¢>®N:) € C}-

QN
projspan | 7 = proj span{|p)®": SR(|¢)) < 1}

Lemma: The optimal test with perfect completeness for any class C of pure
states is

Facc = proj span {|¢>®N:) € C}-

QN
projspan | | 7 = proj span{|p)®": SR(|¢)) < 1}

= (RankTest ® Ig@’ N)Hsym

Lemma: The optimal test with perfect completeness for any class C of pure
states is

Facc = proj span {|¢>®N:) € C}-

QN
projspan | | 7 = proj span{|p)®": SR(|¢)) < 1}

= (RankTest ® 1[;@ N)Hsym

In general, to test properties of bipartite entanglement, might as well discard Bob’s
system [MHO7, CWZ24, Har05].

. Background & Results
. Lower Bound for a Specific Algorithm
lll. Thereis No Better Algorithm

Conclusion

* We give nearly tight bounds for testing MPS/TTNS with one-sided
error when bond dimension grows logarithmically.
* We also analyze few-copy tests (not discussed here)

* Open questions:

What happens at constant bond dimension? We suspect 0 (y/n)
copies could suffice. (See bonus slides.)

What about two-sided error? (We don’t even know the answer for
rank testing.)

What is the copy complexity of learning MPS?

What is the copy complexity of learning/testing PEPS, or MPS
with CBC?

Bonus slides

Few-copy Tests

* Besides copy complexity, an important resource is qguantum memory, i.e.,
number of copies measured simultaneously

* Forthe product test (MPS/TTNS testing atr = 1), only two copies at a time:

o o " B T Q)
g QA @& Q- & Q0

Q: What aboutr > 2?

Few-copy Tests

Theorem: Foranyr = 2, consider testing Y € TTNS (G, r) with measurements
on (r + 1) copies at a time (w/ one-sided error). It holds that O(n") total
copies suffice and 2(n"~1) copies are necessary.

n = 2, optimal Schmidt-rank test B(€) = acceptance probability on e-

AE far state

1.0

0.9

, /T‘=1

H B
i — c R
Y \

0.2 0.4 0.6 0.8 1.0

Constant Bond Dimension?

 ForanyTINSatr = 2 +log(n): Q(nr?/logn)” copies necessary, and 0(nr?) * with perfect completeness
copies sufficient [This work]

Q: Whydoweneedr > 2 + logn?

Take r = 2 and “forget” half the bonds:
1 2 3 4 5 6 n-1 n

This is a valid class of states C. Learning takes ~n copies.

Our hard case for TTNS looks like this
This work: testing C possible using just 0(y/n) copies.

