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* | MPS/TTNS, PEPS, etc. are important classes of states in Ql and condensed
matter physics

TTNS testing:
H=ChRQC2 QR Cln
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The Algorithm

Apply the rank test to every edge [SW’22]:

p%IZS » Isrank(p) <r?

N = 0(nr?) copies suffice to detect far-away state.
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The Hard Instance

P r!
¢
- @ dist(p®"" 1, TTNS) ~ €

But any reduced density matrix
ple]is quite close to rank-r

. — the rank test struggles to
reject!
Schmidt(p) = ( /1 —E,\/ d ,\/ d A d >
n [n(d—-1) [n(d-1) n(d—1)
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Rank Testing

Fact from representation theory:

p®N = @ Ip, ® q4(p)

— N\

irreps of Sy and U(d)

Due to symmetry, measuring A is optimal. Accept if £(1) < r.

Theorem [OW’15]: Letp = (py, ..., pg) be the spectrum of p and let X4, ..., Xy ~ D,
iid. It holds that

Dace = Z Tr(M;p®V) = Pr[LDS(X) <]
AEN:£A(A)<sr
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The TTNS tester performs the rank test with respect to
every cut, so acceptance probability is (pgec)™ 1.

We get an N-letter word like X = 111181111113511121 ...

Y = 8352 ...
L r

Y is uniformly random, L-letter word > Pr[LDS(Y)<r]|=1- <—2>
Counting r

l_'_l
*
L =lengthof V' = Y€ so suppose N < nr?/(logn). Then % ~1-— ( ! )T
n’ ' logn/

n
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Soifr =~ lognthen (pge)" 1 = (1 — ( - ) ) - 1.
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Lemma: The optimal test with perfect completeness for any class C of pure
states is

Facc = proj span {|¢>®N: ) € C}-

QN
projspan | | 7 = proj span{|p)®": SR(|¢)) < 1}

= (RankTest ® 1[;@ N)Hsym

In general, to test properties of bipartite entanglement, might as well discard Bob’s
system [MHO7, CWZ24, Har05].
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Conclusion

* We give nearly tight bounds for testing MPS/TTNS with one-sided
error when bond dimension grows logarithmically.
* We also analyze few-copy tests (not discussed here)

* Open questions:

What happens at constant bond dimension? We suspect 0 (y/n)
copies could suffice. (See bonus slides.)

What about two-sided error? (We don’t even know the answer for
rank testing.)

What is the copy complexity of learning MPS?

What is the copy complexity of learning/testing PEPS, or MPS
with CBC?
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Few-copy Tests

* Besides copy complexity, an important resource is qguantum memory, i.e.,
number of copies measured simultaneously

* Forthe product test (MPS/TTNS testing atr = 1), only two copies at a time:

o o " B T Q)
g QA @& Q- & Q0

Q: What aboutr > 2?



Few-copy Tests

Theorem: Foranyr = 2, consider testing Y € TTNS (G, r) with measurements
on (r + 1) copies at a time (w/ one-sided error). It holds that O(n") total
copies suffice and 2(n"~1) copies are necessary.

n = 2, optimal Schmidt-rank test B(€) = acceptance probability on e-

AE far state
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Constant Bond Dimension?

 ForanyTINSatr = 2 +log(n): Q(nr?/logn)” copies necessary, and 0(nr?) * with perfect completeness
copies sufficient [This work]

Q: Whydoweneedr > 2 + logn?

Take r = 2 and “forget” half the bonds:
1 2 3 4 5 6 n-1 n

This is a valid class of states C. Learning takes ~n copies.

Our hard case for TTNS looks like this
This work: testing C possible using just 0(y/n) copies.



