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Quantum Property Testing

• “Successful” if 𝑎 − 𝑏 = Ω(1)
• “Perfect completeness” if 𝑎 = 1
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Apply the rank test to every edge [SW’22]:

𝑒$𝑒%

𝑒*

𝑒+𝑒,

𝑁 = 𝑂(𝑛𝑟') copies suffice to detect far-away state.

𝜌#$%&
⊗"

×𝑁

Is rank 𝜌 ≤ 𝑟 ?
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dist 𝜑⊗()#, 𝑇𝑇𝑁𝑆 ≈ 𝜖

But any reduced density matrix 
𝜌[𝜑] is quite close to rank-𝑟

⟹ the rank test struggles to 
reject!
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Rank Testing
Fact from representation theory:

𝜌⊗. ≅P
/⊢.

𝐼𝒫% ⊗𝑞/'(𝜌)

…
…
…

irreps of 𝒮!  and 𝕌(𝑑) 

Due to symmetry, measuring 𝜆 is optimal. Accept if ℓ 𝜆 ≤ 𝑟.

Theorem [OW’15]: Let 𝑝 = (𝑝#, … , 𝑝,) be the spectrum of 𝜌 and let 𝑋#, … , 𝑋" ∼ 𝑝, 
iid. It holds that

p-.. ≡ S
+⊢":ℓ + 23

Tr Π+𝜌⊗" = 	Pr 𝐿𝐷𝑆 𝑋 ≤ 𝑟 	
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So if 𝑟 ≈ log 𝑛 then p455 ()# ≈ 1 − #
789 (
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→ 1.
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In general, to test properties of bipartite entanglement, might as well discard Bob’s 
system [MH07, CWZ24, Har05].

Lemma: The optimal test with perfect completeness for any class 𝒞 of pure 
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Conclusion
• We give nearly tight bounds for testing MPS/TTNS with one-sided 

error when bond dimension grows logarithmically.
• We also analyze few-copy tests (not discussed here)
• Open questions:

• What happens at constant bond dimension? We suspect 𝑂( 𝑛) 
copies could suffice. (See bonus slides.)

• What about two-sided error? (We don’t even know the answer for 
rank testing.)

• What is the copy complexity of learning MPS?
• What is the copy complexity of learning/testing PEPS, or MPS 

with CBC?
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• Besides copy complexity, an important resource is quantum memory, i.e., 
number of copies measured simultaneously

• For the product test (MPS/TTNS testing at 𝑟 = 1), only two copies at a time:
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Q: What about 𝒓 ≥ 𝟐?



Few-copy Tests

0.2 0.4 0.6 0.8 1.0 ϵ

0.6

0.7

0.8

0.9

1.0

β(ϵ)
𝛽 𝜖 = acceptance probability on 𝜖-
far state

𝑟 = 1

𝑟

𝑟 = 2

𝑟 = 3

𝑛 = 2, optimal Schmidt-rank test

Theorem: For any 𝑟 ≥ 2, consider testing  𝜓 ∈ 𝑇𝑇𝑁𝑆(𝐺, 𝑟) with measurements 
on (𝑟 + 1) copies at a time (w/ one-sided error). It holds that 𝑂(𝑛3) total 
copies suffice and 𝛺(𝑛3)#) copies are necessary.
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Constant Bond Dimension?
* with perfect completeness• For any TTNS at 𝑟 ≥ 2 + log(𝑛):    Ω(𝑛𝑟%/ log 𝑛)* copies necessary, and 𝑂(𝑛𝑟%) 

copies sufficient [This work]

Q: Why do we need 𝒓 ≥ 𝟐 + 𝒍𝒐𝒈	𝒏	?

Take 𝑟 = 2 and “forget” half the bonds:

…

Our hard case for TTNS looks like this

1 2 3 4 5 6 n-1 n

This is a valid class of states 𝒞. Learning takes ~ 𝑛 copies.

This work: testing 𝒞 possible using just 𝑂( 𝑛) copies.


