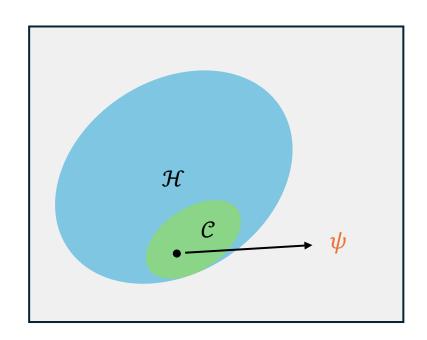
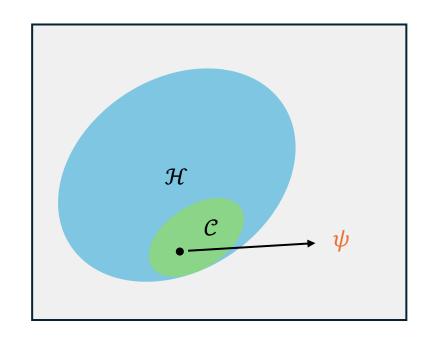
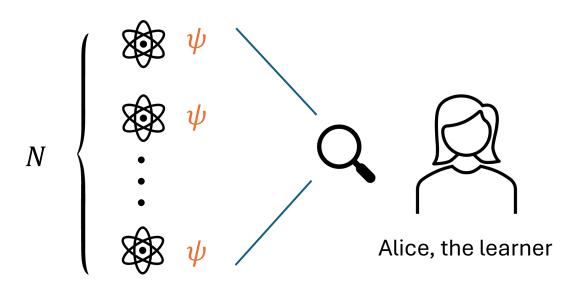
Nearly tight bounds for testing tree tensor network states

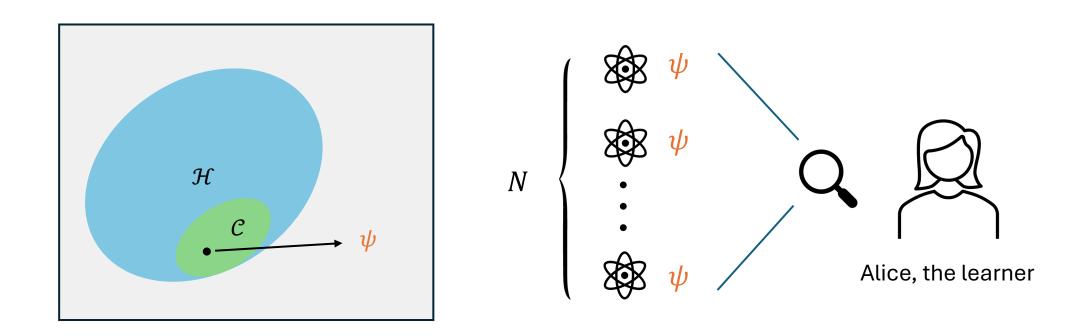
Benjamin Lovitz (Northeastern) and **Angus Lowe** (MIT)

- I. Background & Main Result
- II. Lower Bound for a Specific Algorithm
- III. There is No Better Algorithm
- IV. Final Remarks

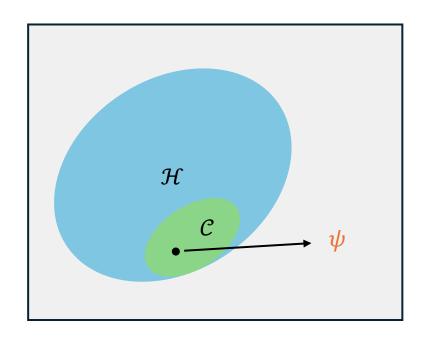


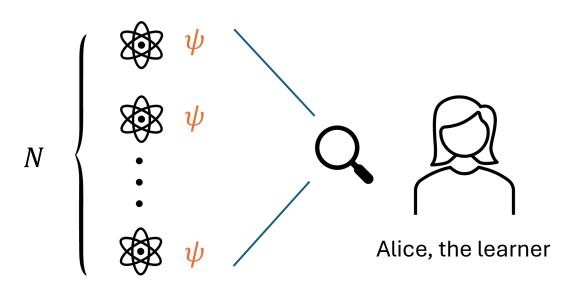




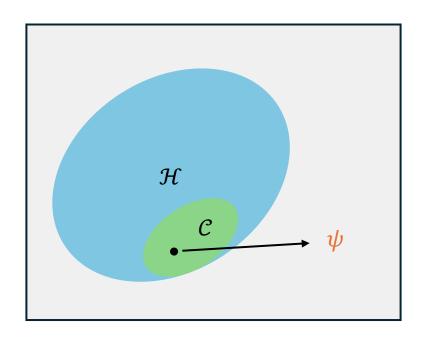


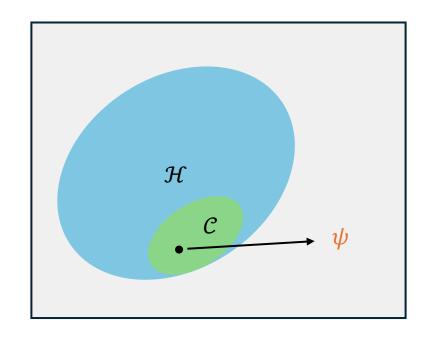
- What are the expected values of some observables? (Shadow tomography)
- How strong is the magnetic field that produces the state ψ ? (Quantum sensing)
- What is ψ ? (Tomography/learning)
- Is ψ even in \mathcal{C} ? (Property testing)



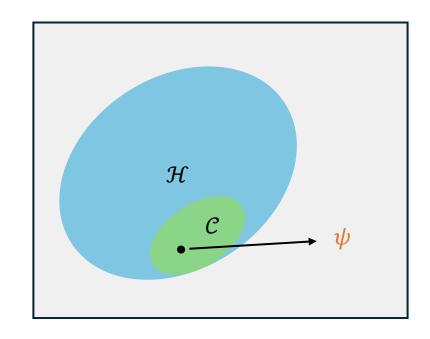


- What are the expected values of some observables? (Shadow tomography)
- How strong is the magnetic field that produces the state ψ ? (Quantum sensing)
- What is ψ ? (Tomography/learning)
- Is ψ even in \mathcal{C} ? (Property testing)

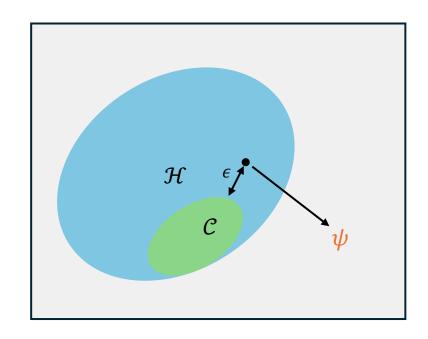




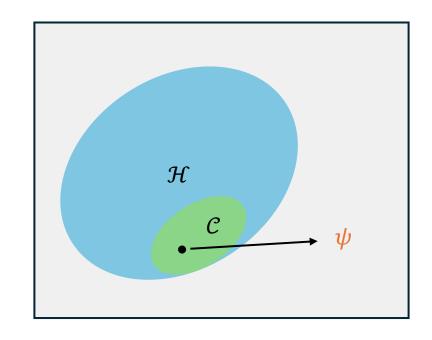
Completeness: $Tr(M\psi^{\otimes N}) \ge a$



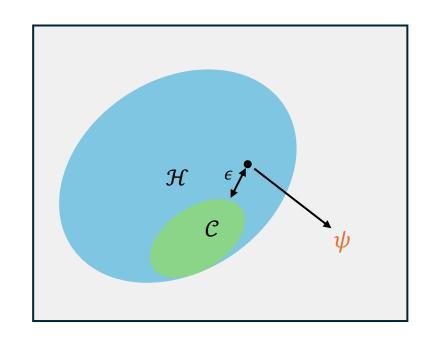
Completeness: $\operatorname{Tr}(M\psi^{\otimes N}) \geq a$



Soundness: $\operatorname{Tr}(M\psi^{\otimes N}) \leq b$

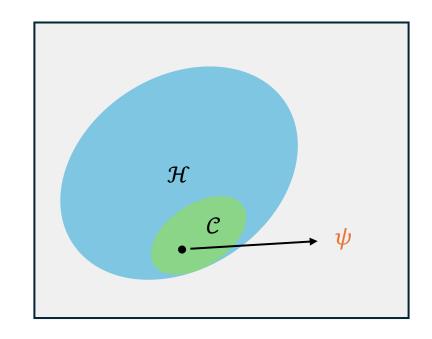


Completeness: $Tr(M\psi^{\otimes N}) \ge a$

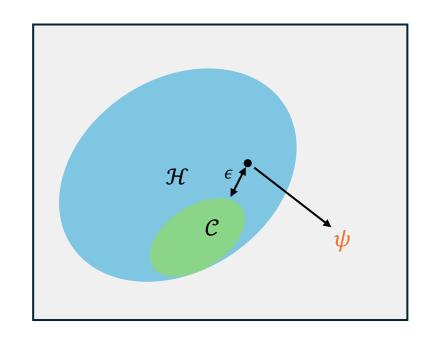


Soundness: $\operatorname{Tr}(M\psi^{\otimes N}) \leq b$

• "Successful" if $a - b = \Omega(1)$



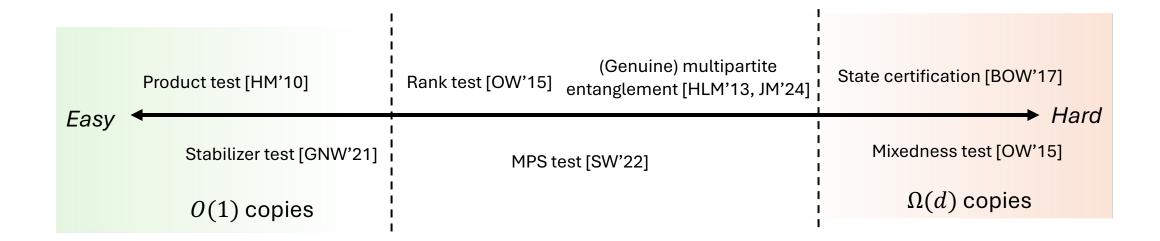
Completeness: $Tr(M\psi^{\otimes N}) \ge a$



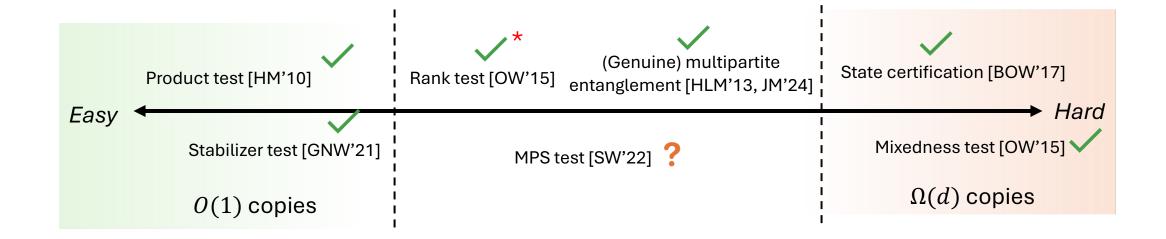
Soundness: $\operatorname{Tr}(M\psi^{\otimes N}) \leq b$

- "Successful" if $a b = \Omega(1)$
- "Perfect completeness" if a = 1

Selected Prior Work



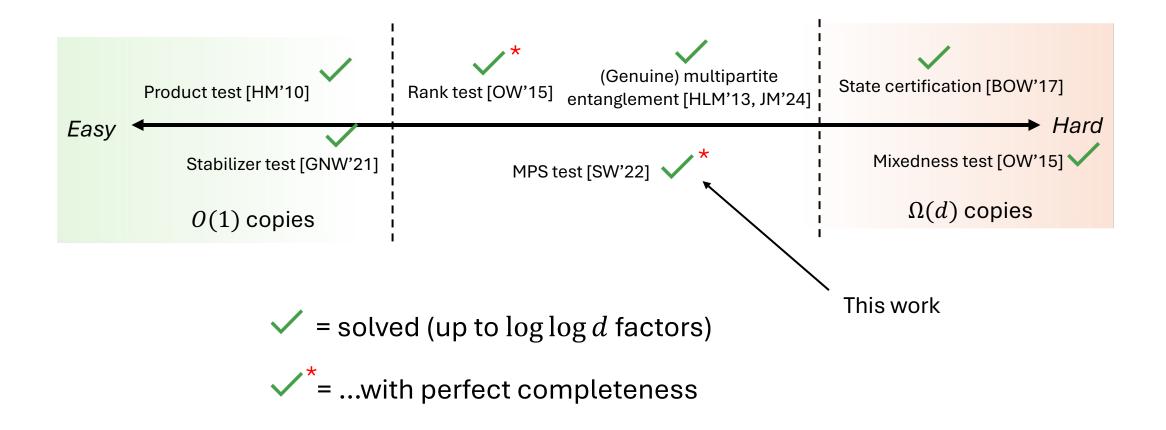
Selected Prior Work



 \checkmark = solved (up to $\log \log d$ factors)

*= ...with perfect completeness

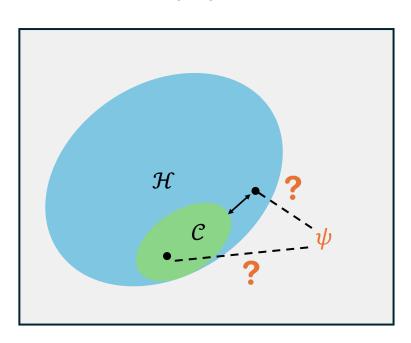
Selected Prior Work



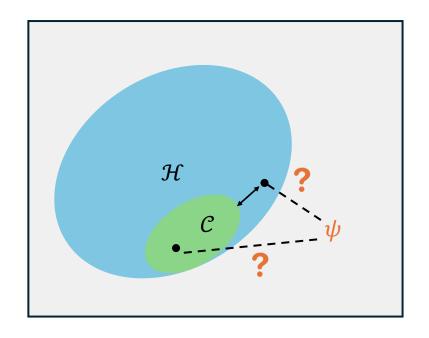
 MPS/TTNS, PEPS, etc. are important classes of states in QI and condensed matter physics

• MPS/TTNS, PEPS, etc. are important classes of states in QI and condensed matter physics

• MPS/TTNS, PEPS, etc. are important classes of states in QI and condensed matter physics

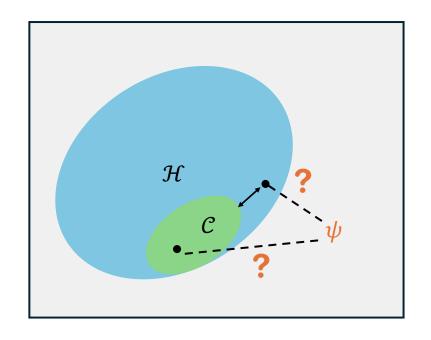


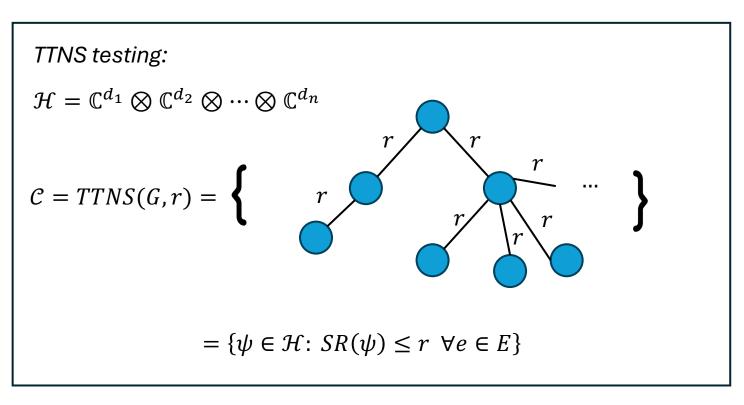
 MPS/TTNS, PEPS, etc. are important classes of states in QI and condensed matter physics



$$\begin{split} \mathit{MPS testing:} \\ \mathcal{H} &= \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_n} \\ \mathcal{C} &= \mathit{MPS}(r) = \left\{ \begin{array}{c} r & r \\ \hline \end{array} \right. \\ &= \left\{ \psi \in \mathcal{H} \colon \psi_{i_1 i_2 \dots i_n} = M_{\alpha_1}^{[1]i_1} M_{\alpha_1 \alpha_2}^{[2]i_2} \dots M_{\alpha_{n-2} \alpha_{n-1}}^{[n]i_{n-1}} M_{\alpha_n}^{[1]i_n} \right\} \\ &= \left\{ \psi \in \mathcal{H} \colon \mathit{SR}(\psi) \leq r \ \forall e \in E \right\} \end{split}$$

 MPS/TTNS, PEPS, etc. are important classes of states in QI and condensed matter physics



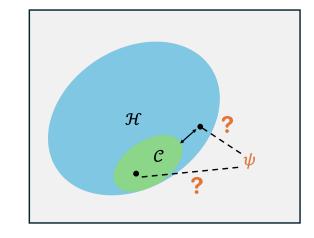


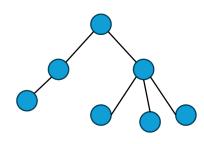
TTNS testing:

Fix any tree graph G = (V, E) with n vertices.

$$\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_n}$$

$$\mathcal{C} = TTNS(G, r) = \{ \psi \in \mathcal{H} \colon SR(\psi) \le r \ \forall e \in E \}$$



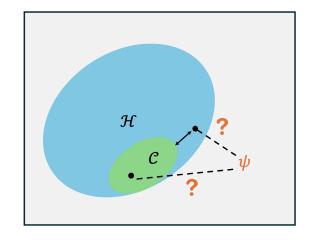


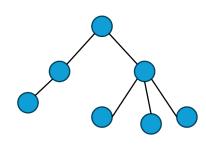
TTNS testing:

Fix any tree graph G = (V, E) with n vertices.

$$\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_n}$$

$$\mathcal{C} = TTNS(G, r) = \{ \psi \in \mathcal{H} \colon SR(\psi) \le r \ \forall e \in E \}$$





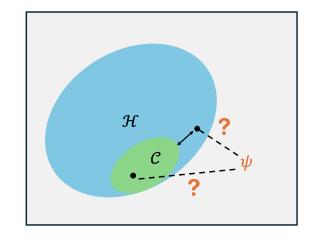
Brief History

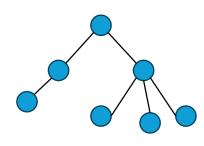
TTNS testing:

Fix any tree graph G = (V, E) with n vertices.

$$\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_n}$$

$$C = TTNS(G, r) = \{ \psi \in \mathcal{H} : SR(\psi) \le r \ \forall e \in E \}$$





Brief History

- At r=1 this is product testing: $\Theta(1)$ copies necessary and sufficient **[HM10]**
- For MPS at $r \ge 2$: $\Omega(\sqrt{n})$ copies necessary, and $O(nr^2)$ sufficient [SW22]
- For MPS at $r \leq 2^{n/8}$: $\Omega(\sqrt{r})$ copies necessary [Aar+23]
- For MPS at $r \ge 2$: $\Omega(\sqrt{nr} + r^2)^*$ copies necessary [CWZ24]

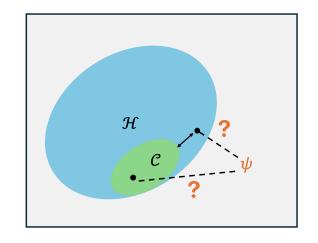
with perfect completeness

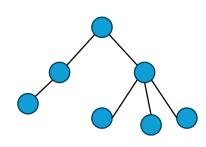
TTNS testing:

Fix any tree graph G = (V, E) with n vertices.

$$\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_n}$$

$$C = TTNS(G, r) = \{ \psi \in \mathcal{H} : SR(\psi) \le r \ \forall e \in E \}$$



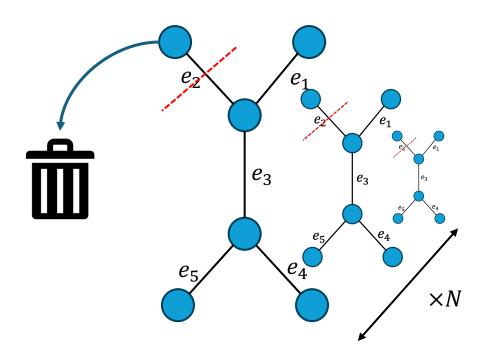


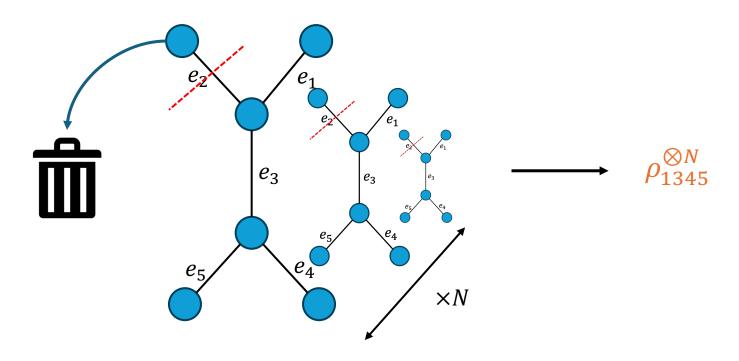
Brief History

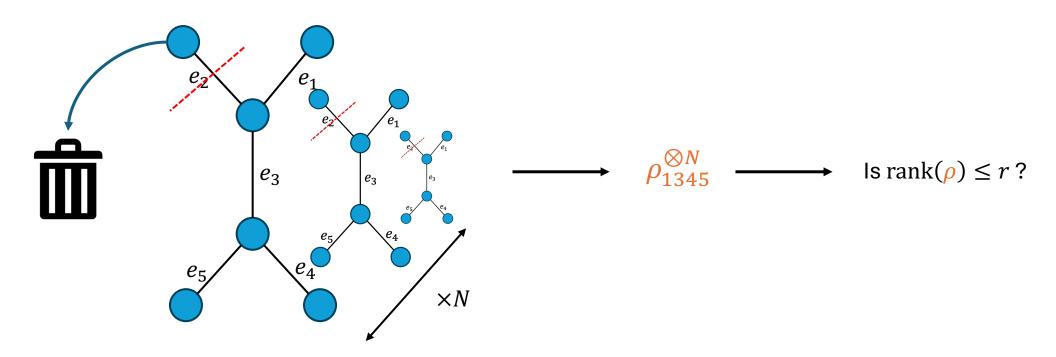
- At r=1 this is product testing: $\Theta(1)$ copies necessary and sufficient [HM10]
- For MPS at $r \ge 2$: $\Omega(\sqrt{n})$ copies necessary, and $O(nr^2)$ sufficient [SW22]
- For MPS at $r \le 2^{n/8}$: $\Omega(\sqrt{r})$ copies necessary [Aar+23]
- For MPS at $r \ge 2$: $\Omega(\sqrt{nr} + r^2)^*$ copies necessary [CWZ24]

- with perfect completeness
- For any TTNS at $r \ge 2 + \log(n)$: $\Omega(nr^2/\log n)^*$ copies necessary, and $O(nr^2)$ copies sufficient [This work]

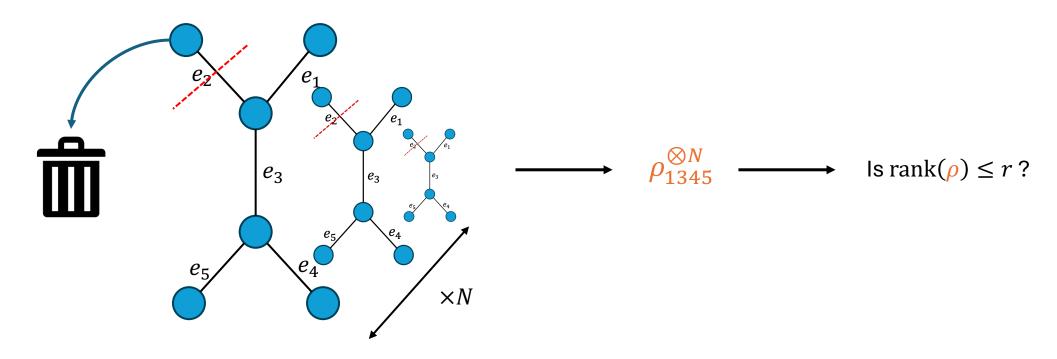
- I. Background & Results
- II. Lower Bound for a Specific Algorithm
- III. There is No Better Algorithm
- IV. Final Remarks



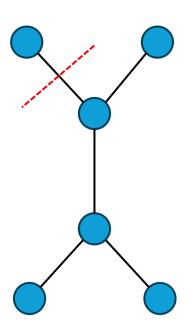


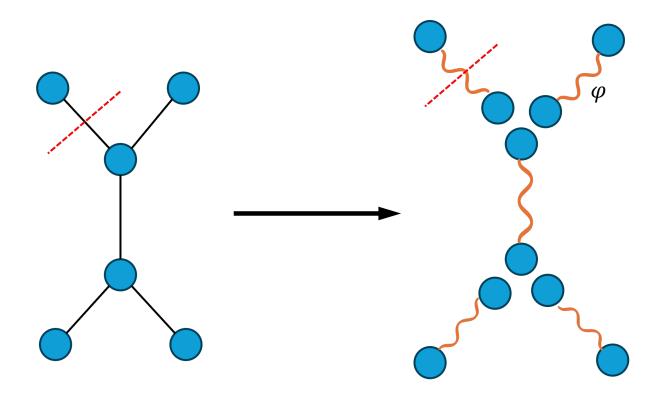


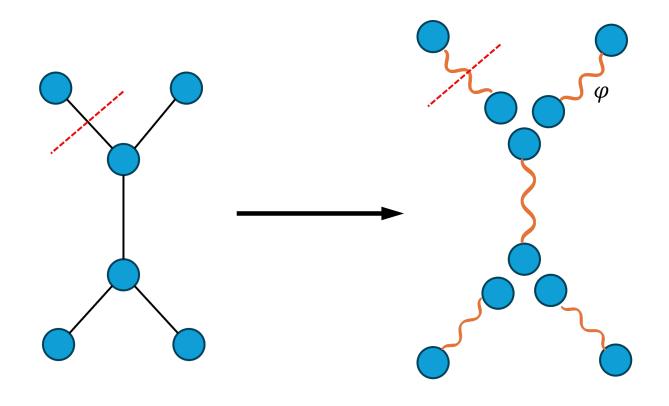
Apply the rank test to every edge [SW'22]:



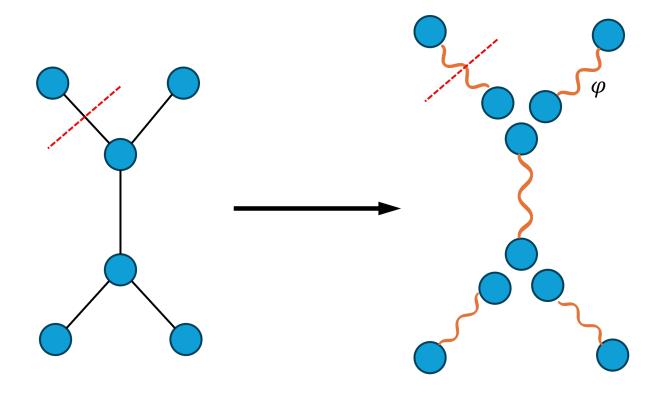
 $N = O(nr^2)$ copies suffice to detect far-away state.





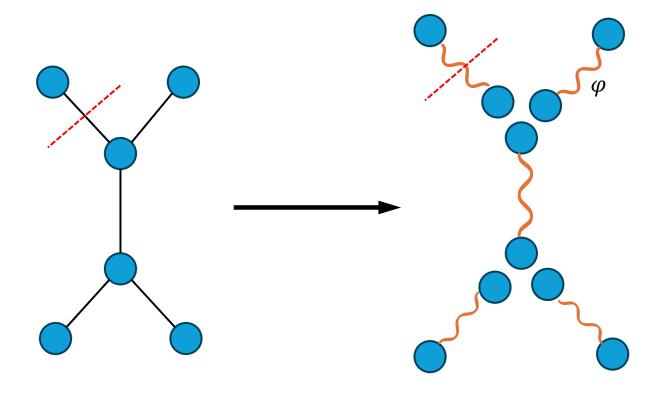


$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, ..., \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$



$$\operatorname{dist}(\varphi^{\otimes n-1}, TTNS) \approx \epsilon$$

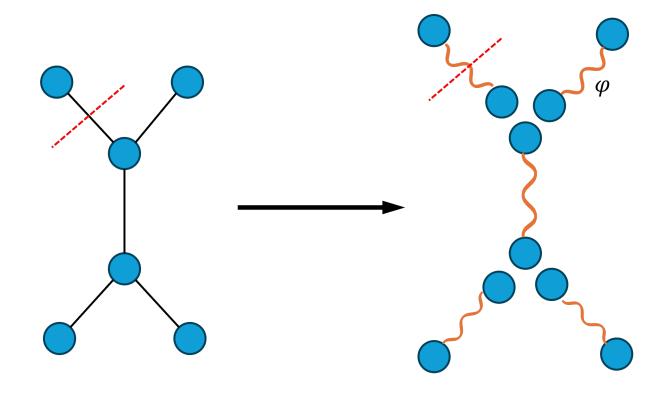
$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, ..., \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, ..., \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

$$\operatorname{dist}(\varphi^{\otimes n-1}, TTNS) \approx \epsilon$$

But any reduced density matrix $ho[\varphi]$ is quite close to rank-r



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, ..., \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

$$\operatorname{dist}(\varphi^{\otimes n-1}, TTNS) \approx \epsilon$$

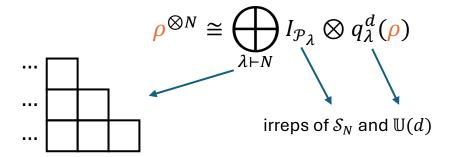
But any reduced density matrix $ho[\varphi]$ is quite close to rank-r

⇒ the rank test struggles to reject!

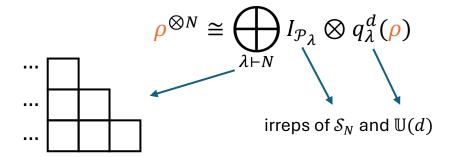
Fact from representation theory:

$$\rho^{\otimes N} \cong \bigoplus_{\lambda \vdash N} I_{\mathcal{P}_{\lambda}} \otimes q_{\lambda}^{d}(\rho)$$

Fact from representation theory:

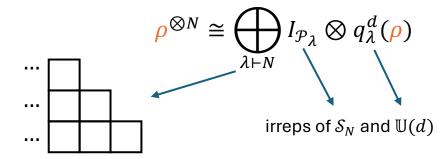


Fact from representation theory:



Due to symmetry, measuring λ is optimal. Accept if $\ell(\lambda) \leq r$.

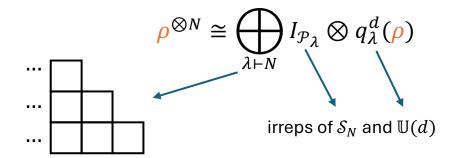
Fact from representation theory:



Due to symmetry, measuring λ is optimal. Accept if $\ell(\lambda) \leq r$.

Distributed as
$$p(\lambda) = \mathrm{Tr} \big(I_{\mathcal{P}_{\lambda}} \big) \mathrm{Tr} \left(q_{\lambda}^d(\rho) \right) = \dim(\mathcal{P}_{\lambda}) s_{\lambda}(p_1, \dots, p_d)$$
Spectrum of ρ

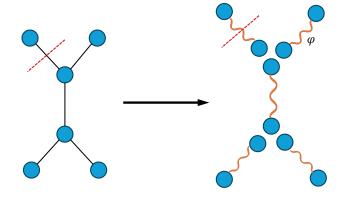
Fact from representation theory:



Due to symmetry, measuring λ is optimal. Accept if $\ell(\lambda) \leq r$.

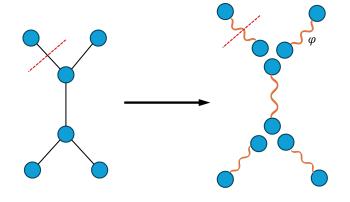
Theorem [OW'15]: Let $p=(p_1,\ldots,p_d)$ be the spectrum of ρ and let $X_1,\ldots,X_N\sim p$, iid. It holds that

$$p_{\text{acc}} \equiv \sum_{\lambda \vdash N: \ell(\lambda) \le r} \text{Tr} \left(\prod_{\lambda} \rho^{\otimes N} \right) = \text{Pr}[LDS(X) \le r]$$



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \dots, \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

The TTNS tester performs the rank test with respect to every cut, so acceptance probability is $(p_{acc})^{n-1}$.



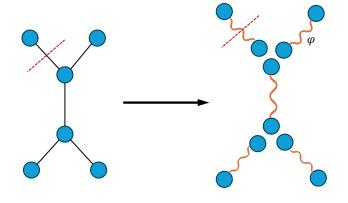
$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \dots, \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

The TTNS tester performs the rank test with respect to every cut, so acceptance probability is $(p_{acc})^{n-1}$.

Recall: Rank test accepts with probability

$$p_{acc} = Pr[LDS(X) \le r]$$

where X is random word with letters sampled according to $spec(\rho)$.



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \dots, \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

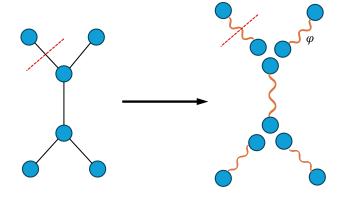
The TTNS tester performs the rank test with respect to every cut, so acceptance probability is $(p_{acc})^{n-1}$.

Recall: Rank test accepts with probability

$$p_{acc} = Pr[LDS(X) \le r]$$

where X is random word with letters sampled according to $spec(\rho)$.

We get an N-letter word like X = 111181111113511121...



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \dots, \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

The TTNS tester performs the rank test with respect to every cut, so acceptance probability is $(p_{acc})^{n-1}$.

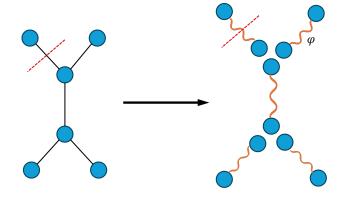
Recall: Rank test accepts with probability

$$p_{acc} = Pr[LDS(X) \le r]$$

where X is random word with letters sampled according to $spec(\rho)$.

We get an N-letter word like X = 111181111113511121...

$$Y \equiv 8352 ...$$



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \dots, \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

The TTNS tester performs the rank test with respect to every cut, so acceptance probability is $(p_{acc})^{n-1}$.

Recall: Rank test accepts with probability

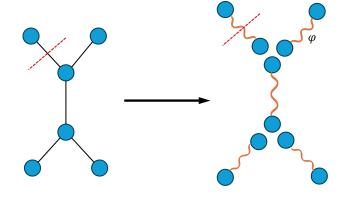
$$p_{acc} = Pr[LDS(X) \le r]$$

where X is random word with letters sampled according to $spec(\rho)$.

We get an N-letter word like X = 111181111113511121...

$$Y \equiv 8352 ...$$

Y is uniformly random, L-letter word \longrightarrow $\Pr[LDS(Y) \le r] \approx 1 - \left(\frac{L}{r^2}\right)^r$



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \dots, \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

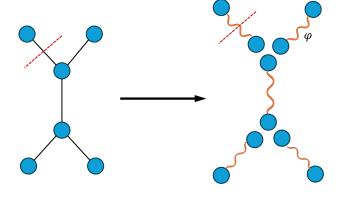
The TTNS tester performs the rank test with respect to every cut, so acceptance probability is $(p_{acc})^{n-1}$.

We get an N-letter word like X = 111181111113511121...

$$Y \equiv 8352 ...$$

 ${\it Y}$ is uniformly random, ${\it L}$ -letter word

$$\xrightarrow{\text{Counting}} \Pr[LDS(Y) \le r] \approx 1 - \left(\frac{L}{r^2}\right)^r$$

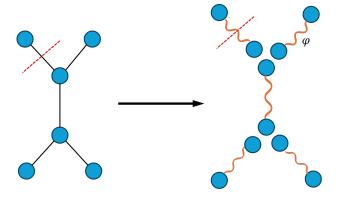


$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \dots, \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

The TTNS tester performs the rank test with respect to every cut, so acceptance probability is $(p_{acc})^{n-1}$.

We get an N-letter word like X = 111181111113511121...

$$Y \equiv 8352 ...$$



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, ..., \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

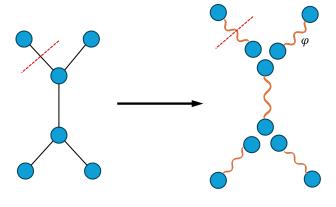
$$Y$$
 is uniformly random, L -letter word
$$\longrightarrow \Pr[LDS(Y) \leq r] \approx 1 - \left(\frac{L}{r^2}\right)^r$$

$$L = \text{length of } Y \approx \frac{N\epsilon}{n}$$
. So suppose $N \ll nr^2/(\log n)$. Then $\bigstar \approx 1 - \left(\frac{1}{\log n}\right)^r$.

The TTNS tester performs the rank test with respect to every cut, so acceptance probability is $(p_{acc})^{n-1}$.

We get an N-letter word like X = 111181111113511121...

$$Y \equiv 8352...$$



$$Schmidt(\varphi) = \left(\sqrt{1 - \frac{\epsilon}{n}}, \sqrt{\frac{\epsilon}{n(d-1)}}, \sqrt{\frac{\epsilon}{n(d-1)}}, ..., \sqrt{\frac{\epsilon}{n(d-1)}}\right)$$

Y is uniformly random, L-letter word \longrightarrow $\Pr[LDS(Y) \le r] \approx 1 - \left(\frac{L}{r^2}\right)^r$

$$L = \text{length of } Y \approx \frac{N\epsilon}{n}$$
. So suppose $N \ll nr^2/(\log n)$. Then $\bigstar \approx 1 - \left(\frac{1}{\log n}\right)^r$.

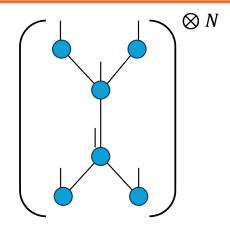
So if
$$r \approx \log n$$
 then $(p_{acc})^{n-1} \approx \left(1 - \left(\frac{1}{\log n}\right)^{\log n}\right)^n \to 1$.

- I. Background & Results
- II. Lower Bound for a Specific Algorithm
- III. There is No Better Algorithm
- IV. Conclusion

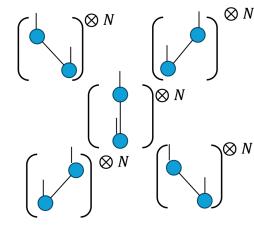
$$P_{acc} := \text{proj span } \{ |\phi\rangle^{\otimes N} : |\phi\rangle \in \mathcal{C} \}.$$

$$P_{acc} := \text{proj span } \{ |\phi\rangle^{\otimes N} : |\phi\rangle \in \mathcal{C} \}.$$

proj span $\{|\phi\rangle^{\otimes N}: |\phi\rangle \in TTNS(G,r)\}$ = proj span



≽ proj span



$$P_{acc} := \text{proj span } \{ |\phi\rangle^{\otimes N} : |\phi\rangle \in \mathcal{C} \}.$$

$$P_{acc} := \text{proj span } \{ |\phi\rangle^{\otimes N} : |\phi\rangle \in \mathcal{C} \}.$$

proj span
$$= \operatorname{proj span}\{|\varphi\rangle^{\otimes N} : \operatorname{SR}(|\varphi\rangle) \leq r$$

$$= (\operatorname{RankTest} \otimes I_B^{\otimes N}) \Pi_{sym}$$

$$P_{acc} := \text{proj span } \{ |\phi\rangle^{\otimes N} : |\phi\rangle \in \mathcal{C} \}.$$

proj span
$$= \operatorname{proj span}\{|\varphi\rangle^{\otimes N} : \operatorname{SR}(|\varphi\rangle) \leq r$$

$$= (\operatorname{RankTest} \otimes I_B^{\otimes N}) \Pi_{sym}$$

In general, to test properties of bipartite entanglement, might as well discard Bob's system [MH07, CWZ24, Har05].

- I. Background & Results
- II. Lower Bound for a Specific Algorithm
- III. There is No Better Algorithm
- IV. Final Remarks

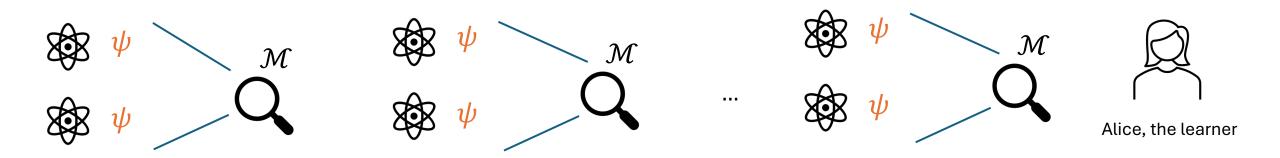
Conclusion

- We give nearly tight bounds for testing MPS/TTNS with one-sided error when bond dimension grows logarithmically.
- We also analyze few-copy tests (not discussed here)
- Open questions:
 - What happens at constant bond dimension? We suspect $O(\sqrt{n})$ copies could suffice. (See bonus slides.)
 - What about two-sided error? (We don't even know the answer for rank testing.)
 - What is the copy complexity of learning MPS?
 - What is the copy complexity of learning/testing PEPS, or MPS with CBC?

Bonus slides

Few-copy Tests

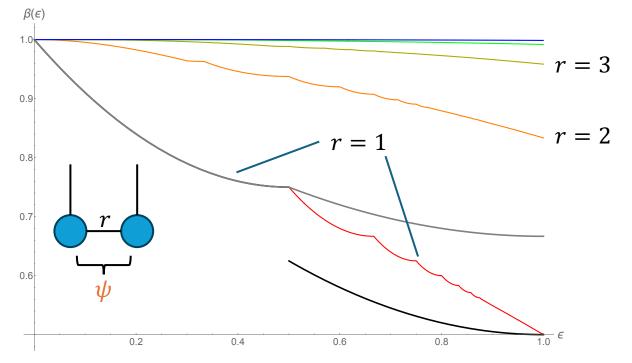
- Besides copy complexity, an important resource is quantum memory, i.e., number of copies measured simultaneously
- For the product test (MPS/TTNS testing at r=1), only two copies at a time:



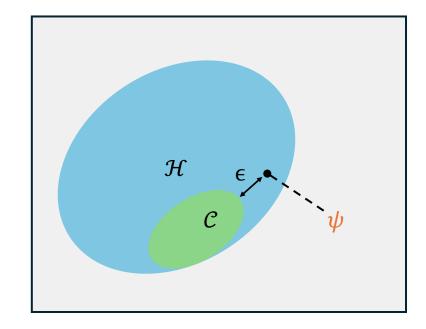
Q: What about $r \geq 2$?

Few-copy Tests

Theorem: For any $r \ge 2$, consider testing $\psi \in TTNS(G,r)$ with measurements on (r+1) copies at a time (w/ one-sided error). It holds that $O(n^r)$ total copies suffice and $\Omega(n^{r-1})$ copies are necessary.



 $\beta(\epsilon)$ = acceptance probability on ϵ far state



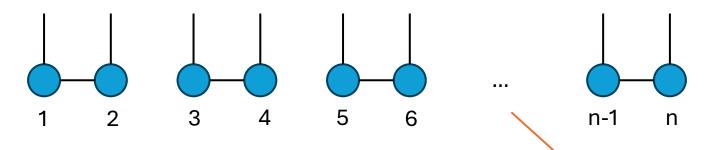
Constant Bond Dimension?

• For any TTNS at $r \ge 2 + \log(n)$: $\Omega(nr^2/\log n)^*$ copies necessary, and $O(nr^2)$ copies sufficient [This work]

* with perfect completeness

Q: Why do we need $r \geq 2 + log n$?

Take r=2 and "forget" half the bonds:



This is a valid class of states C. Learning takes $\sim n$ copies.

Our hard case for TTNS looks like this

This work: testing \mathcal{C} possible using just $O(\sqrt{n})$ copies.