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Quantum information processing consumes quantum resources. E.g., entanglement & magic.
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Fault-tolerant quantum computation with magic states:
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Replace magic with random Clifford operations [BSS16, Bra+19]:
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𝑐!|𝜙!⟩ BSS16: Bravyi, Smith, Smolin. “Trading classical and quantum computational resources” PRX 6.2 (2016)

Bra+19: Bravyi et al. “Simulation of quantum circuits by low-rank stabilizer decompositions” Quantum 3 (2019)



Q1: Can we replace entanglement with random local operations?
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à If the goal is to compute expectation values, then yes.
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Q2: At what cost?

𝑉, 𝑊, and 𝑀 are potentially random.



Summary of results

CC? Cost Ancillas Restrictions

[BSS16] No 2&($$) 1 𝑂(1)-sparse

[PS22] Yes 1 + 2𝑅(𝐽(𝒰)) 𝑛) + 𝑛* Clifford

[This work] No 𝜉(𝒰) 2 None

For space-like cuts the cost is related to the entangling power.

Entanglement measures

𝑈
𝑛)
𝑛*

𝑉

𝑊	

𝑛)

𝑛*

|0⟩

|0⟩

We have 1 + 2𝑅 𝐽 𝒰 ≤ 𝜉 𝒰 ≤ 2" $%+$& +! − 1. In many cases, 1 + 2𝑅 𝐽 𝒰 = 𝜉 𝒰  

**

PS22: Piveteau and Sutter, "Circuit Knitting With Classical Communication," in IEEE ToIT, vol. 70, no. 4 (2024)



Summary of results
Space-like cuts can be applied to remove interactions in a Hamiltonian simulation.

Space-like cut of the 1st order Trotter formula

Runtime is on the order of exp(8𝜂𝑡) where 𝜂 = ∑,∈.) 𝐻, .

Best prior work achieved exp( 𝜕𝐴 𝜂!/0𝑡!+!/0/𝜖!/0) using a 𝑝12 order formula [Chi+21].

Chi+21: Childs et al. “Theory of Trotter Error with Commutator Scaling”. PRX 11.1 (2021)



Summary of results
For time-like cuts the cost depends on the number of wires replaced.

CC? Cost Ancillas

[Pen+19] No 16, None

[BPS23] Yes 4, 2k

[This work] Yes 2,𝑟 None
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Lower bound also obtained: Θ(2,) samples are necessary and sufficient to estimate output 
probabilities.

Pen+19: Peng et al. “Simulating Large Quantum Circuits on a Small Quantum Computer”. PRL 125 (2020)

BPS23: Brenner, Piveteau, and Sutter. Optimal wire cutting with classical communication.  arxiv:1506.01396
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Computational model
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Goal: Compute a good estimate of 𝑂!⊗𝑂"⊗⋯⊗𝑂$ = 0 𝑈3(𝑂!⊗𝑂"⊗⋯⊗𝑂$ 𝑈|0⟩.

Standard solution: Run the circuit 𝑀 times and compute the empirical mean,
𝜇 = !

4
(𝜇! + 𝜇" +⋯+ 𝜇4).

𝑉𝑎𝑟 𝜇 ∼
1
𝑀

"size poly(𝑛)



Quasiprobability-based simulation
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𝑠𝑖𝑔𝑛 𝑎5 𝒯5 ∘ ℰ5

The 1-norm of the QPD is defined as 𝑎 ! = ∑56!% |𝑎5|.

A quasiprobability decomposition (QPD) of a channel 𝒩)→) has the form

𝒩
𝐴 ℰ5

𝐴
𝑅U

56!

%

𝑎5𝐴
𝐴

𝑂5
=⇔

Fact: Let 𝑋 be a Hermitian observable on 𝐴. Measuring the observable 𝑎 !𝑠𝑖𝑔𝑛(𝑎5)(𝑂5 ⊗𝑋) on 

the ensemble of states 𝑎5 /‖𝑎‖!, ℰ5 𝜌
5
 yields an unbiased estimator of 𝑇𝑟(𝑋𝒩(𝜌)) for any 𝜌.



A space-like cut is a QPD of the form
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Theorem [PS22]: The minimal 1-norm of a space-like cut of 𝒰)*: 𝜌 ↦ 𝑈𝜌𝑈3 is at least 1 + 2𝑅(𝐽(𝒰)).

If in addition ℰ5 = 𝒱5 ⊗𝒲5 for every 𝑗 ∈ [𝑚] we call this a local space-like cut.

PS22: Piveteau and Sutter, "Circuit Knitting With Classical Communication," in IEEE ToIT, vol. 70, no. 4 (2024)



Theorem [PS’22]: The minimal 1-norm of a space-like cut of 𝒰)*: 𝜌 ↦ 𝑈𝜌𝑈3 is at least 1 + 2𝑅(𝐽(𝒰)).
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Theorem: Let 𝑈 = ∑9 𝑐9𝑉9 ⊗𝑊9 be a decomposition of 𝑈 into local unitaries. The double Hadamard 
test is a local space-like cut of 𝒰: 𝜌 ↦ 𝑈𝜌𝑈3 with two ancilla qubits and 1-norm 𝑎 ! = 2 𝑐 !

" − 𝑐 "
". 

Furthermore, whenever this decomposition is an operator Schmidt decomposition,

𝑎 ! = 2 𝑐 !
" − 1 = 1 + 2𝑅(𝐽(𝒰)).
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(Local space-like cut)

We define the product extent 𝜉(𝑈) as the minimum of 2 𝑐 !
" − 𝑐 "

" over all 𝑈 = ∑9 𝑐9𝑉9 ⊗𝑊9.



The product extent
We define the product extent 𝜉(𝑈) as the minimum of 2 𝑐 !

" − 𝑐 "
" over all 𝑈 = ∑9 𝑐9𝑉9 ⊗𝑊9.

The product extent is an entanglement measure satisfying:

1. Faithfulness: 𝜉 𝑈 = 1 iff 𝑈 is a product of local unitaries.

2. Local unitary invariance: 𝜉 (𝑉)⊗𝑉*)𝑈(𝑊)⊗𝑊*) = 𝜉(𝑈).

3. Submultiplicativity: 𝜉 𝑈𝑉 ≤ 𝜉 𝑈 𝜉 𝑉 .



Clustered Hamiltonian simulation

Consider the 1st order Trotter formula:
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The double Hadamard test
Let 𝑈 = ∑9 𝑐9𝑉9 ⊗𝑊9. We can explain the simulation procedure without referring to QPDs.

Lemma: 𝜉(𝑈) −1 ?*+?++@𝑦 is an unbiased estimator of 𝔼	𝑦A. 

𝑖, 𝑗, 𝑔 ∼ 𝑝(𝑖, 𝑗, 𝑔)

à If 𝑉𝑎𝑟 𝑦A = 𝜎" then the variance of this estimator is 𝜉 𝑈 "𝜎".



Overview
I. Background & summary of results

II. Optimal space-like cuts

III. Optimal time-like cuts

IV. Lower bounds



⇔

Theorem [Yua+21, This work]: The optimal time-like cut has 1-norm 2$+! − 1. Moreover, the 
measure-and-prepare channels can each be implemented using 𝑂(𝑛") diagonal gates.
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Measure-and-prepare channels

𝑛

𝑖𝑑 = 2$ℳA − 2$ − 1 ℳ!

How well does this work for a concrete estimation task?

Time-like cuts

Yuan et al. “Universal and operational benchmarking of quantum memories”. npj QI 7, 108 (2021)



If we only care about rank-1 observables, 𝑂(2$) copies suffice. 

Theorem: For rank-1 observables, Ω(2$) copies are necessary.

𝑈! 𝑈"
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Task: Given fixed 𝑈!, 𝑈" along with 𝑁	copies of some unknown state 𝜌, estimate 𝑇𝑟(𝑋𝑈"𝑈!𝜌𝑈!
3𝑈"

3) 
using circuits of the form
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Lower bounds

!𝜌A/𝜌!

Use quantum data hiding [DLT’02]: there exists a pair of orthogonal states (𝜌?: 𝑏 ∈ {0,1}) on 
𝐴𝐵 such that 𝑏 is inaccessible to Alice and Bob if they only make LOCC measurements.

ℳ 𝑏B ∈ {0,1}

Time-like cut that works too well ⇒ 𝐼 𝑏B: 𝑏 > 2:$ ⇒ contradiction!

𝐼 𝑏: 𝑏B ≤ 2:$



• Can we find an example of a 𝑈 such that 𝜉 𝑈 ≠ 1 + 2𝑅(𝐽(𝑈))?

• What are some lower bounds in the space-like case?

• Can we extend the clustered Hamiltonian simulation algorithm to 
compute correlation functions in thermal states?

• Is there a classically-hard family of n-qubit circuits that can be simulated 
in time poly(n) using just polylog(n)-qubit circuits?

Open questions



• Can a quantum computer outperform classical computers at some useful task? 
à Central motivating question
• Now (NISQ VQEs), Far future (Fault-tolerance) https://arxiv.org/pdf/2203.17181.pdf has 

a graph cartoon
• Interesting to look at “soon” regime (hundreds of logical qubits). Quantum simulation?

• Highlight Quera paper as example of status quo

• Maintaining long-range entanglement is a significant barrier to large-scale 
quantum computation. How do we mitigate this?
• Error mitigation: try our best with noise, mitigate the errors
• Circuit cutting idea: we don’t do the entangling operation at all.
• Can we apply circuit cutting to practical problems?

• Philosophical question: quantum Shannon theory has been (somewhat) 
successful in establishing a tradeoff between classical randomness and 
entanglement, for communication. Is there a similar tradeoff between these 
resources for computation? Circuit cutting is one answer.

https://arxiv.org/pdf/2203.17181.pdf

