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Quantum information processing consumes quantum resources. E.g., entanglement & magic.

Fault-tolerant quantum computation with magic states:
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Replace magic with random Clifford operations [BSS16, Bra+19]:
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zj=1 J |¢]> BSS16: Bravyi, Smith, Smolin. “Trading classical and quantum computational resources” PRX 6.2 (2016)

Bra+19: Bravyi et al. “Simulation of quantum circuits by low-rank stabilizer decompositions” Quantum 3 (2019)



Q1: Can we replace entanglement with random local operations?

- If the goal is to compute expectation values, then yes.

(Original circuit)
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(Space-like cut)

V,W,and M are potentially random.

0Q2: At what cost?

(Time-like cut)



Summary of results

For space-like cuts the cost is related to the entangling power.
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Ancillas Restrictions

xx [BSS16] No 20(B) 1 0(1)-sparse
[PS22] Yes 1+2R((U) | ng+np Clifford
[This work] No W)’ 2 None

We have 1 + ZR(](U)) < &(U) < 22Matne)*1 _ 1 |n many cases, 1 + ZR(](’U)) = &(W)

PS22: Piveteau and Sutter, "Circuit Knitting With Classical Communication," in IEEE TolT, vol. 70, no. 4 (2024)



Summary of results

Space-like cuts can be applied to remove interactions in a Hamiltonian simulation.
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Space-like cut of the 15t order Trotter formula

Runtime is on the order of exp(8nt) where n = Y, caall Hell-

Best prior work achieved exp(|dA|nt/Pt1*+1/P /e1/P) ysing a pt* order formula [Chi+21].

Chi+21: Childs et al. “Theory of Trotter Error with Commutator Scaling”. PRX 11.1 (2021)



Summary of results

For time-like cuts the cost depends on the number of wires replaced.

rank r

II’ EE: Uy
U X y 0y = (X
= :H =

CcC? Cost Ancillas
[Pen+19] No 16* None
[BPS23] Yes 4k 2k
[This work] Yes 2kr None

Lower bound also obtained: ©(2%) samples are necessary and sufficient to estimate output
probabilities.

Pen+19: Peng et al. “Simulating Large Quantum Circuits on a Small Quantum Computer”. PRL 125 (2020)

BPS23: Brenner, Piveteau, and Sutter. Optimal wire cutting with classical communication. arxiv:1506.01396
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Computational model
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Goal: Compute a good estimate of (0; @ 0, Q - Q 0,,) = (0|UT(01 R0, QR On)U|O).

Standard solution: Run the circuit M times and compute the empirical mean,
1
p=— (g + pp + o ).
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Quasiprobability-based simulation

A quasiprobability decomposition (QPD) of a channel V,_,4 has the form
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The 1-norm of the QPD is defined as ||a|l; = X7, |a;].

Fact: Let X be a Hermitian observable on A. Measuring the observable ||a|l;sign(a;)(0; ® X) on
the ensemble of states {(|aj|/||a||1, Ej(p))}. yields an unbiased estimator of Tr(XN (p)) for any p.
J



A space-like cut is a QPD of the form

|0)(O0| LOCC channel
m
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The minimal 1-norm of a space-like cut of Uyg:p » UpUT is at least 1 + 2R(J (1U)).

If in addition & = V; @ W; for every j € [m] we call this a local space-like cut.

PS22: Piveteau and Sutter, "Circuit Knitting With Classical Communication," in IEEE TolT, vol. 70, no. 4 (2024)



The minimal 1-norm of a space-like cut of Uyz: p = UpUT is at least 1 + 2R(J(U)).
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We define the product extent é(U) as the minimum of 2||c||? — ||c||5 overall U = ¥, ¢, V, @ W,.



The product extent

We define the product extent &(U) as the minimum of 2||c|| — |Icll5 overall U = Y, c,V, @ W,.

The product extent is an entanglement measure satisfying:
1. Faithfulness: £(U) = 1iff U is a product of local unitaries.
2. Local unitary invariance: E((Vy @ V) U(W, @ Wg)) = &(U).

3. Submultiplicativity: E(UV) < E(U)EV).



Clustered Hamiltonian simulation
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The double Hadamard test

Let U = Y, ¢V, ® W,. We can explain the simulation procedure without referring to QPDs.
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Lemma: §(U)(—1)P1%P219y is an unbiased estimator of E y,.

> If Var[y,] = a2 then the variance of this estimator is §(U)?c?.
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Time-like cuts
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The optimal time-like cut has 1-norm 2™*1 — 1. Moreover, the
measure-and-prepare channels can each be implemented using 0(n?) diagonal gates.
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How well does this work for a concrete estimation task?

Yuan et al. “Universal and operational benchmarking of quantum memories”. npj Q/ 7, 108 (2021)



Task: Given fixed Uy, U, along with N copies of some unknown state p, estimate Tr(XUzUlpU;rUg)
using circuits of the form

M
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If we only care about rank-1 observables, 0(2™) copies suffice.

For rank-1 observables, Q(2™) copies are necessary.
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Lower bounds

Use quantum data hiding [DLT'02]: there exists a pair of orthogonal states (p,: b € {0,1}) on
AB such that b is inaccessible to Alice and Bob if they only make LOCC measurements.

e
Po/P1 < b" € {0,1} I(b:b") <27"
\

Time-like cut that works too well = I(b": b) > 2™ = contradiction!



Open questions
« Can we find an example of a U such that E(U) = 1+ 2R(J(U))?

* What are some lower bounds in the space-like case?

« Can we extend the clustered Hamiltonian simulation algorithm to
compute correlation functions in thermal states?

* |s there a classically-hard family of n-qubit circuits that can be simulated
in time poly(n) using just polylog(n)-qubit circuits?



« Can a quantum computer outperform classical computers at some useful task?
- Central motivating question

« Now (NISQ VQEs), Far future (Fault-tolerance) https://arxiv.org/pdf/2203.17181.pdf has
a graph cartoon

* Interesting to look at “soon” regime (hundreds of logical qubits). Quantum simulation?
« Highlight Quera paper as example of status quo

* Maintaining long-range entanglement is a significant barrier to large-scale
quantum computation. How do we mitigate this?
« Error mitigation: try our best with noise, mitigate the errors
» Circuit cutting idea: we don't do the entangling operation at all.
« Can we apply circuit cutting to practical problems?

* Philosophical question: quantum Shannon theory has been (somewhat)
successful in establishing a tradeoff between classical randomness and
entanglement, for communication. Is there a similar tradeoff between these
resources for computation? Circuit cutting is one answer.



https://arxiv.org/pdf/2203.17181.pdf

