Optimal quantum circuit cuts

(with application to clustered Hamiltonian simulation)

Aram W. Harrow & **Angus Lowe**

Center for Theoretical Physics, MIT

(arxiv: 2403.01018)

Overview

- I. Background & summary of results
- II. Optimal space-like cuts
- III. Optimal time-like cuts
- IV. Lower bounds

Quantum information processing consumes quantum resources. E.g., entanglement & magic.

Fault-tolerant quantum computation with **magic** states:

Replace **magic** with random Clifford operations [BSS16, Bra+19]:

BSS16: Bravyi, Smith, Smolin. "Trading classical and quantum computational resources" PRX 6.2 (2016)

Bra+19: Bravyi et al. "Simulation of quantum circuits by low-rank stabilizer decompositions" Quantum 3 (2019)

Q1: Can we replace **entanglement** with random local operations?

→ If the goal is to compute expectation values, then yes.

V, W, and M are potentially random.

Q2: At what cost?

Summary of results

For space-like cuts the cost is related to the entangling power.

Entanglement measures

	CC?	Cost	Ancillas	Restrictions
** [BSS16]	No	$2^{O(n_{\rm B})}$	1	O(1)-sparse
[PS22]	Yes	$1 + 2R(J(\mathcal{U}))$	$n_A + n_B$	Clifford
[This work]	No	$\xi(\mathcal{U})^{^{ullet}}$	2	None

We have $1 + 2R(J(\mathcal{U})) \le \xi(\mathcal{U}) \le 2^{2(n_A + n_B) + 1} - 1$. In many cases, $1 + 2R(J(\mathcal{U})) = \xi(\mathcal{U})$

PS22: Piveteau and Sutter, "Circuit Knitting With Classical Communication," in IEEE ToIT, vol. 70, no. 4 (2024)

Summary of results

Space-like cuts can be applied to remove interactions in a Hamiltonian simulation.

Space-like cut of the 1st order Trotter formula

Runtime is on the order of $\exp(8\eta t)$ where $\eta = \sum_{k \in \partial A} ||H_k||$.

Best prior work achieved $\exp(|\partial A|\eta^{1/p}t^{1+1/p}/\epsilon^{1/p})$ using a p^{th} order formula [Chi+21].

Chi+21: Childs et al. "Theory of Trotter Error with Commutator Scaling". PRX 11.1 (2021)

Summary of results

For time-like cuts the cost depends on the number of wires replaced.

	CC?	Cost	Ancillas
[Pen+19]	No	16^k	None
[BPS23]	Yes	4^k	2k
[This work]	Yes	$2^k r$	None

Lower bound also obtained: $\Theta(2^k)$ samples are necessary and sufficient to estimate output probabilities.

Pen+19: Peng et al. "Simulating Large Quantum Circuits on a Small Quantum Computer". PRL 125 (2020)

BPS23: Brenner, Piveteau, and Sutter. Optimal wire cutting with classical communication. arxiv:1506.01396

Overview

- I. Background & summary of results
- II. Optimal space-like cuts
- III. Optimal time-like cuts
- IV. Lower bounds

Computational model

Goal: Compute a good estimate of $\langle O_1 \otimes O_2 \otimes \cdots \otimes O_n \rangle = \langle 0 | U^{\dagger}(O_1 \otimes O_2 \otimes \cdots \otimes O_n) U | 0 \rangle$.

Standard solution: Run the circuit M times and compute the empirical mean,

$$\mu = \frac{1}{M}(\mu_1 + \mu_2 + \dots + \mu_M).$$

$$Var[\mu] \sim \frac{1}{M}$$

Quasiprobability-based simulation

A quasiprobability decomposition (QPD) of a channel $\mathcal{N}_{A\to A}$ has the form

$$\mathcal{N} = \sum_{j=1}^{m} a_j \mathcal{T}_j \circ \mathcal{E}_j = \|a\|_1 \sum_{j=1}^{m} \frac{|a_j|}{\|a\|_1} sign(a_j) \mathcal{T}_j \circ \mathcal{E}_j$$

$$\Leftrightarrow \frac{A}{N} = \sum_{j=1}^{m} a_j \frac{A}{E_j} \frac{A}{R} O_j$$

The 1-norm of the QPD is defined as $||a||_1 = \sum_{j=1}^m |a_j|$.

Fact: Let X be a Hermitian observable on A. Measuring the observable $||a||_1 sign(a_j)(O_j \otimes X)$ on the ensemble of states $\{(|a_j|/||a||_1, \mathcal{E}_j(\rho))\}_j$ yields an unbiased estimator of $Tr(X\mathcal{N}(\rho))$ for any ρ .

A **space-like cut is** a QPD of the form

$$\mathcal{U}_{AB\to AB} = \sum_{j=1}^{m} a_j \left(id_{AB\to AB} \otimes \mathcal{T}_j \right) \circ \mathcal{E}_j$$

$$\mathcal{T}_j(X) \coloneqq Tr \left((O_j^A \otimes O_j^B) X \right)$$

Theorem [PS22]: The minimal 1-norm of a space-like cut of $\mathcal{U}_{AB}: \rho \mapsto U\rho U^{\dagger}$ is at least $1 + 2R(J(\mathcal{U}))$.

If in addition $\mathcal{E}_j = \mathcal{V}_j \otimes \mathcal{W}_j$ for every $j \in [m]$ we call this a **local space-like cut**.

Theorem [PS'22]: The minimal 1-norm of a space-like cut of $\mathcal{U}_{AB}: \rho \mapsto U\rho U^{\dagger}$ is at least $1 + 2R(J(\mathcal{U}))$.

$$\frac{A}{B} \qquad u \qquad = \sum_{j=1}^{m} a_{j} \qquad \frac{|0\rangle\langle 0|}{A} \qquad v_{j} \qquad O_{j}^{A} \qquad \text{(Local space-like cut)}$$

Theorem: Let $U = \sum_{\alpha} c_{\alpha} V_{\alpha} \otimes W_{\alpha}$ be a decomposition of U into local unitaries. The **double Hadamard test** is a local space-like cut of $U: \rho \mapsto U\rho U^{\dagger}$ with two ancilla qubits and 1-norm $||a||_1 = 2||c||_1^2 - ||c||_2^2$. Furthermore, whenever this decomposition is an **operator Schmidt decomposition**,

$$||a||_1 = 2||c||_1^2 - 1 = 1 + 2R(J(\mathcal{U})).$$

We define the **product extent** $\xi(U)$ as the minimum of $2\|c\|_1^2 - \|c\|_2^2$ over all $U = \sum_{\alpha} c_{\alpha} V_{\alpha} \otimes W_{\alpha}$.

The product extent

We define the **product extent** $\xi(U)$ as the minimum of $2\|c\|_1^2 - \|c\|_2^2$ over all $U = \sum_{\alpha} c_{\alpha} V_{\alpha} \otimes W_{\alpha}$.

The product extent is an entanglement measure satisfying:

- 1. Faithfulness: $\xi(U) = 1$ iff U is a product of local unitaries.
- 2. Local unitary invariance: $\xi((V_A \otimes V_B)U(W_A \otimes W_B)) = \xi(U)$.
- 3. Submultiplicativity: $\xi(UV) \leq \xi(U)\xi(V)$.

Clustered Hamiltonian simulation

Consider the 1st order Trotter formula:

$$U = \left(\prod_{j \in A} e^{-iH_j t/r} \prod_{k \in B} e^{-iH_k t/r} \prod_{\ell \in \partial A} e^{-iH_\ell t/r}\right)^r.$$

$$\xi(U) \leq (\prod_{j \in A} \xi(e^{-iH_{j}t/r}) \prod_{k \in B} \xi(e^{-iH_{k}t/r}) \prod_{\ell \in \partial A} \xi(e^{-iH_{\ell}t/r}))^{r}$$

$$= \left(\prod_{\ell \in \partial A} [1 + 2R(J(e^{-iH_{\ell}t/r}))]\right)^{r}$$

$$= \left(\prod_{\ell \in \partial A} [1 + |4\cos(\|H_{\ell}\|t/r)\sin(\|H_{\ell}\|t/r)]|\right)^{r} \leq \exp\left\{4\left(\sum_{\ell \in \partial A} \|H_{\ell}\|\right)t\right\}$$

The double Hadamard test

Let $U = \sum_{\alpha} c_{\alpha} V_{\alpha} \otimes W_{\alpha}$. We can explain the simulation procedure without referring to QPDs.

Lemma: $\xi(U)(-1)^{b_1+b_2+g}y$ is an unbiased estimator of $\mathbb{E} y_0$.

 \rightarrow If $Var[y_0] = \sigma^2$ then the variance of this estimator is $\xi(U)^2\sigma^2$.

Overview

- I. Background & summary of results
- II. Optimal space-like cuts
- III. Optimal time-like cuts
- IV. Lower bounds

Time-like cuts

$$\frac{n}{/} = \sum_{j=1}^{m} a_j - \sum_{j=1}^{M_j} y \quad \sigma_y - \sum_{j=1}^{M_j} a_j - \sum_{j=1}^{M_j$$

$$id = \sum_{j=1}^{m} a_j \mathcal{M}_j$$
 Measure-and-prepare channels

Theorem [Yua+21, This work]: The optimal time-like cut has 1-norm $2^{n+1} - 1$. Moreover, the measure-and-prepare channels can each be implemented using $O(n^2)$ diagonal gates.

$$id = 2^n \mathcal{M}_0 - (2^n - 1)\mathcal{M}_1$$

How well does this work for a concrete estimation task?

Task: Given fixed U_1 , U_2 along with N copies of some unknown state ρ , estimate $Tr(XU_2U_1\rho U_1^{\dagger}U_2^{\dagger})$ using circuits of the form

If we only care about rank-1 observables, $O(2^n)$ copies suffice.

Theorem: For rank-1 observables, $\Omega(2^n)$ copies are necessary.

Overview

- I. Background & summary of results
- II. Optimal space-like cuts
- III. Optimal time-like cuts

IV. Lower bounds

Lower bounds

Use **quantum data hiding** [DLT'02]: there exists a pair of orthogonal states $(\rho_b: b \in \{0,1\})$ on AB such that b is inaccessible to Alice and Bob if they only make LOCC measurements.

Time-like cut that works too well $\Rightarrow I(b':b) > 2^{-n} \Rightarrow$ contradiction!

Open questions

- Can we find an example of a U such that $\xi(U) \neq 1 + 2R(J(U))$?
- What are some lower bounds in the space-like case?
- Can we extend the clustered Hamiltonian simulation algorithm to compute correlation functions in thermal states?
- Is there a classically-hard family of n-qubit circuits that can be simulated in time poly(n) using just polylog(n)-qubit circuits?

- Can a quantum computer outperform classical computers at some useful task?
 Central motivating question
 - Now (NISQ VQEs), Far future (Fault-tolerance) https://arxiv.org/pdf/2203.17181.pdf has a graph cartoon
 - Interesting to look at "soon" regime (hundreds of logical qubits). Quantum simulation?
 - Highlight Quera paper as example of status quo
- Maintaining long-range entanglement is a significant barrier to large-scale quantum computation. How do we mitigate this?
 - Error mitigation: try our best with noise, mitigate the errors
 - Circuit cutting idea: we don't do the entangling operation at all.
 - Can we apply circuit cutting to practical problems?
- Philosophical question: quantum Shannon theory has been (somewhat) successful in establishing a tradeoff between classical randomness and entanglement, for communication. Is there a similar tradeoff between these resources for computation? Circuit cutting is one answer.